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Outline of the Course

1. Review of Probability

2. Eigen Analysis, Singular Value Decomposition (SVD) and Principal

© 0N o ke W

Component Analysis (PCA)

The Learning Problem and the VC Dimension
Training vs Testing

Nonlinear Transformation and Logistic Regression
Overfitting and Regularization (Ridge Regression)
Lasso Regression

Neural Networks

Convolutional Neural Networks
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Approximation- Generalization Tradeoff

Balance between approximating f in the training data and generalizing on new
data.

Goal: small E,,; — good approximation of f out of sample.
More complex H = better chance of approximating f
Less complex H = better chance of generalizing out of sample

A more complex H better approximates f, however, it might be more difficult
for the algorithm to zoom in on the right hypothesis.

The ideal H is a singleton hypothesis set containing only the target function.

H = {f} = Wining the lottery!
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Example: Sine Target

f:[-1,1] =R f(z)=sin(rz) unknown

We sample z uniformly in [—1,1] to .
generate two training samples (N = 2) a

Two models used for learning:

Ho:  h(x)=0b B
Hi:  h(z)=ax+b

T 08 08 4 02 0 02 04 08 08 1

Which is better, Hg or H?
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Approximation - H versus H;

Based on the two models and assuming we know f, try to find the two
functions that minimize the squared error:

Ho:h(x)=10 Hi:h(z)=ax+0b

B Eoul = 0.50 s Euu =0.20

2! L L - L L L
R T T T 2 os 95 w4 92 0 02 o4 56 oe
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Learning - H( versus H

In learning, we do not know f. We use the two examples (z1,y1),(z2,%2) to
learn the two functions that best fits the data.

Hp : midpoint (b = w) H; : line passes through the two points

The result varies depending on the data points. We need bias-variance
analysis to evaluate our result (considering other possible data sets).
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Bias and Variance - H

Repeating the process with many data sets, we can estimate the bias and the
variance.

Y
Y

‘ N__7 @

sin (7 )

T X
Average hypothesis g(z). In this case g(x) & 0 that is close to the best approximation
computed using f.
bias: difference between red function g(x) and blue function f.

var(z) is indicated by the gray shaded region that is g(z) £ /var(z)
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Bias and Variance - H;

Using the same data sets as before, for the second model we get

sin(7x)

bias: difference between red function g(z) and blue function f.
var(x) is indicated by the gray shaded region that is g(x) 4 +/var(x)
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The Winner is ...
Ho Hq

Y
Y

\/ g(x)

sin(7x) sin(mr)
T T
bias = 0.50 var=0.25 bias=0.21 var=1.69

The simpler model wins by significantly decreasing the var at the expense of a
smaller increase in bias
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| esson Learned

However, the var term decreases as N increases, so if we get a bigger data
set, the bias term will be dominant in E,,;, and H; will win.

Match the ‘model complexity’

to the data resources, not to the target complexity
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Outline

» Bias and Variance

» Learning Curves
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Expected E,,; and E;;,

Consider learning with a data set D of size N,
the final hypothesis has a expected out-of-sample error Ep [Eout(g(p))} and
expected in-sample error Ep [Em(g(p))]

How do they vary with N7
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The Curves

Expected Error
= || =
Expected Error

o

Number of Data Points, N Number of Data Points, N

Simple Model Complex Model

Note: the simple model converges more quickly but to a higher error. In both
models, F,,; decreases while F;,, increases toward the smallest error the
learning model can achieve in approximating f.
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VC versus Bias-Variance

genera\uauon error variance

Eiu ////Emf'
in-sample error bias

Number of Data Points, N Number of Data Points, N
VC analysis bias-variance

In the VC analysis, Eout < E;n +€). In the bias-variance, it is assumed that, for every N, g

has the same performance as the best approximation to f in the learning model.

Expected Error
Expected Error

Both capture the tradeoff: Approximation-Generalization
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Outline

» What is overfitting?
» The role of noise
» Deterministic noise

» Dealing with overfitting
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lllustration of Overfitting

» Simple target function — 2nd order
pO|yn0m|a|. O Noisy Data
= 2"d Order Target

—— 4t Order Fit

> Generate 5 data points (noisy).

» Solve regression problem — 5 points fit by =
a 4th order polynomial.

Eiyn=0

However, result does not match the target. T
The complex model uses additional degrees of freedom to learn noise.

Overfitting: Process of picking a hypothesis with lower Ej, and higher E,,;.
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Overfitting vs Bad Generalization

Neural network fitting noisy data:

» Green curve: Running gradient descent
and evaluate Ej, for each epoch.

» Red curve: Use test set to evaluate Eyy
for each epoch.

» Generalization error (difference between
the two curves) is increasing.

Overfitting: Einl  Eouwt?

Possible solution: Early stopping

Early stopping Eout

L L L L L A L L L
0 1000 2000 3000 4000 5000 60d0 7000 8000 000  1000C
Epochs
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Case Study

Polynomial regression: z — (1,z,22%,---).

» 10th order target function +noise » 50th order target function (noiseless)

O Data O[%ata
— Target — larget

Data set D contains 15 data points.
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Two Fits for Each Target

O Data / O Data
—2nd Order Fit —2nd Order Fit
—10th Order Fit [0} —10th Order Fit
xr T
Noisy low-order target (10th) Noiseless high-order target (50th)
‘ 2nd Order 10th Order ‘ 2nd Order 10th Order
Ei, | 0.05 0.034 Ein | 0.029 107°
Fout | 0.127 9.00 Ey | 0.120 7680

The 10th order polynomial heavily overfits the data.
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Overfitting

An Irony of Two Learners
» Two learners O and /%

» They know the target is 10th
order.

» (O chooses H >

» /7 chooses .
» Give up implementing the true

target function.
» Best you can do considering # r

data points (N > 10dvc) Learning a 10th-order target (noisy)

O Data
—2nd Order Fit
—10th Order Fit

Match the resources, rather than the target complexity.

Irony: The belief that the best results are obtained by incorporating as much
information about the target function as it is available.
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Learning Curves

Ho
5 o)
wi L
oSl — -
S Ein g
(& Q
() ()
> 3
| L
Number of Data Points, NV Number of Data Points, NV

Overfitting is occurring in the shaded region by choosing H1¢ which has better
FE;, but worse E,,;.

What matters is how the model complexity matches quantity and quality of
the data, instead of only matching the target function.
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A Detailed Experiment

Goal: Study impact of noise level o2, target complexity (s and number
of data points V.

Qy
y=1)+elr) = 3 aaLy(o) + (o))

o2

where ¢(z) are iid standard Normal random variables.

Interesting targets — L;(x) : increasing complexity polynomials (Legendre
polynomials (*>). aq's selected independently from a standard Normal.
Qr
y=> agite(z) agq : sum of coefficients paired with ¢
q=0

——
normalized

Rescale o;'s so that ]Ea,m[fz] =1

(*)A Legendre polynomial L;(z) has specific coefficients such that they are.orthogonal.
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A Detailed Experiment

Goal: Study impact of noise level o2, target complexity ()5 and number
of data points V.

Example

Qy
y=f(x)+e(x Zooqup+e( )
=

o2

» Noise level: o2
» Target complexity: QQy =10
» Data size: N =15




Overfitting ARE FSAN/ELEG815

The Results
Fit the data set (x1,41), -, (zN,yn) using our two models:
H5: 2nd-order polynomials H1o: 10th-order polynomials
Target: 10th order polynomial (noisy) Compare out-of-sample errors of

> go € /Hz
— » g10 € Hio

Overfit Measure:
Eout (910) — Eout (.‘/2)

Y

O Data
—2nd Order Fit
—10th Order Fit

T

More positive — More overfitting
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The Results

The colors map to overfit measure: E,:(g10) — Eout(2)

0.2 100 0.2

0.1 : 0.1
1

-01 : 0.1

-0.2 0.2

Numbﬂr of chh pomts 1\

[es]
()

. 92
Noise level, o=

Numbcr of clata pomts \

Impact of o* Impact of Qf
Less overfitting when o2 drops or N Less overfitting when Qs drops or N
increases (@ = 20). increases (02 = 0.1).

Number of Data Points 1 Overfitting |
Noise T Overfitting 1
Target Complexity T Overfitting 1
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Definition of Deterministic Noise (DN)

Part of f that H cannot capture: f(x) — h*(x)

Why called “noise”? For a given learning model, there is a
best approximation h* to the target
Similarities with stochastic noise: function f.

» It cannot be modeled. B
» Trying to learn model it results in
overfitting and a spurious final

hypothesis. >
Differences with stochastic noise:

» DN depends on H (1 Complexity |
DN )

» DN is fixed for a given x.

T

Shading area: Deterministic noise.
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Impact of “Noise”

0.2 1
Nt 0.1 g
= o)
Qo
3 0 §50
81 o
= g
-0.1 I—E
-0.2
0 100 . 120,
Numger of data pomts _\ Numﬁ')er of data points, N
Stochastic noise Deterministic noise

Number of Data Points 1 Overfitting |
Stochastic Noise T Overfitting 1
Deterministic Noise 1 Overfitting 71
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Deterministic Noise- Impact on Overfitting

Deterministic noise and target complexity (s

Eout (910) — Eout (,(/2 )

» As () increases, deterministic
noise increases.

» Why overfit starts at @)y = 107
H1o cannot completely capture
targets of order greater than 10
(Deterministic Noise).

Target complexity, Qs
[$)
(=)

0 100 . 120, ,
Numgber of data points, N

» For a finite N: H tries to fit
stochastic and deterministic noise.
How much overfit



Overfitting {OF FSAN/ELEGS15
& ARE

Noise and Bias-Variance

For f a noiseless target:

Ep[(9”)(x) = £(x))’] = Enl(9'") (x) — §(x))’] + (3(x) — f(x))’

var(x) bias(x)

» The best approximation h* to the target function f is approximately the
‘average’ hypothesis g.

» What if f is a noisy target?

y=fx)+ex)  El(x)]=0
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» o2 — Stochastic Noise

» bias — Deterministic Noise
Captures model’s inability to approximate f.

» var — Variance of the model

Captures model’s susceptibility to being led in the wrong direction by the
two types of noise.

Size of set N 1 var |.
Given a hypothesis set 7{, bias and o are fix (irreducible error).
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Dealing with Overfitting

» Regularization: Putting the brakes.
» Validation: Checking the bottom line.

O Noisy Data
— 2 Order Target
— 4t Order Fit

Y
Y

o i T

free fit restrained fit
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Two Approaches to Regularization

» Mathematical:

» Ill-posed problems in function approximation (solved by smoothness
constrains).

» Bayesian Approach (prior knowledge). Assumptions might not be

realistic

» Heuristic:

» Constraining on the minimization of Ej,



Overfitting

A Familiar Example

f:[-1,1] =R f(x)=sin(rz) unknown

We sample x uniformly in [—1,1] to
generate two training samples (N = 2)

Two models used for learning:

Ho:  h(z)=0
Hi:  h(z)=a

r+b

Which was better, H, or H;?
Ho beats H;

FSAN/ELEG815
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A Familiar Example

T X
Without Regularization: With regularization:
Learned function varies extensively The same data sets are less volatile.

depending on the data set.
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Bias-Variance Decomposition

var(x) gray shaded region (g(x) £ \/var(z)).

sin(mwx)

- - -
Without Regularization: With regularization:
bias =0.21 var=1.69 bias =0.23 var=0.33.

Regularized 7, also beats the constant model H( (bias=0.50, var=0.25)
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Legendre Polynomials

Standard set of polynomials in one variable = € [—1,1] with nice analytic
properties:

» Curves get more complex when order increases.
» Orthogonal to each other within z € [-1,1].

» Any regular polynomial can be written as a linear combination of
Legendre Polynomials.

Ly Loy L3 W Ls

T %(31‘: -1) %(51‘3 —37) é(&n — 3022+ 3) %(63,1"" -ee)
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The Polynomial Model
H¢ : polynomials of order @)

Q
Ho = {h‘h(x) =wlz=)" quq(x)}
weR@+1
where z=[1,L1(z),... Lo(x)]T (L,: Legendre Polynomials).

Using Legendre Polynomials, coefficients w, can be treated as independent
(dealing with orthogonal coordinates).

Ly Ly L w Ls

T $(3z* — 1) 3(52° — 3x) 1(352 — 3022 + 3) H63z°---)

Note: A is linear in w — Apply Linear Regression in Z space.
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Unconstrained Solution

. [
Given ('Iluyl)f“?(x]\“y]\f) — (Zluy1>7'“7(zl7y1)7"'7<ZN7yN)

where ® : X — Z is a nonlinear transformation.

1 N T 2
Ein(w) = NZ(W z, —Yn)

Wi, = arg min E;,
I weRQ+1

= (z'z)"'7"y
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Constraining the Weights
» Hard constraint: Hs is constrained version of H19  with w, =0 for ¢ > 2

Q
» Softer version: Z wg < (C "soft-order" constraint
q=0

It encourages each weight to be small.

C' determines the amount of regularization.

Larger C, weaker constraint — less regularization.

The optimization problems becomes:

Wreg = argmlin N(ZW —y)(Zw—y) subject to: wiw <O
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Augmented Error

A
Eaug(W) = Eip(w) + NWTW

Wreg = argmin L, (w) + NWTW unconditionally (Ridge Regression)
Solves:
Wreg = argnlin N(ZW —y)(Zw—y) subject to: wiw<C
ct A
> \=0 = C — Least Squares Solution

P A=00 = C=0  Wyg=0
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Ridge Regression

Given the data set (x1,%1),---,(Xn,yn), Ridge regression shrinkage fit
minimizes a penalized residual sum of squares,

, N d d
w9 = argmin |3 (yi—wo— 3 w2+ Ay w?
weRd |1 =1 =1

= arg min ||y —wo —Xw|[3+ w3 ],
WGRd N——

where [|w||s is the £2 norm [|w|| = /9, w;.

Here A > 0 is a tuning parameter, which controls the strength of the penalty
term.

Loss Penalty

» When \ =0, we get the linear regression estimate.
> When \ = oo, we get wid9¢ = (),
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Ridge Regression

» For X\ in between, we balance two ideas: a linear model of y on X, and
shrinking the coefficients.
Given

Y = wo +w1X1 + wWoX9 +w3X3 + ... + Wy 1X7—1 +WgXq T+ €.

» If the columns of X are centered, then the intercept estimate is Wy =y,
so we usually assume that y, X have been centered (zero mean) and
don’t include an intercept.

» The penalty term ||w||3 is unfair if the predictor variables are not on the
same scale. Variables are not measured in the same units, we typically
scale the columns of X (to have sample variance 1), and then perform
ridge regression.
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Ridge Regression

Credit data set: balance (average credit card debt for a number of
individuals), age, cards (number of credit cards), education (years of
education), income (in thousand of dollars), limit (credit limit), and rating
(credit rating).

Each curve corresponds to estimate for one of the seven variables.

g4 "7 — Income
” .. --- Limit
‘g’ g S e Rating
2 N Student
& 8 4 - N
D & | N
o AN
O g | N . .
i o > As A1, the ridge estimates
-_§ o - ;”"\m,ﬂ N
3 g wy — 0.
c 2
_.g |
l/) -
8
(YIJ T T T
1e-02 1e+00 1e+02 1e+04

A
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Ridge Regression
The penalized residual sum of squares (PRSS):
PRSS = (y—Xw)"(y—Xw)+\|lwl[3
PRSS = yl'y—w!XTy+yXw—w/XT"Xw+ \w’w

Differentiating with respect to w, we obtain,

P
0PRSS _ —2XT(y — Xw) 4+ 2\w
ow
OPRSS —oXTy — 2XTXw + 2)\w
ow
PRSS(w) is convex. Set the first derivative to zero,
Aw = XT(y — Xw) (1)
The ridge regression solution is
w'9¢ — (XTX 4+ A1) 'XTy. (2)

» Inclusion of A makes problem non-singular even if X” X is not invertible.
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Ridge Regression

The ridge regression estimate

wridge _ (XTX+ )\I)_IXTy.

» Solution indexed by the parameter A

» For each shrinkage A value, we have a solution.(path of solutions).

» )\ controls the size of the coefficients and the amount of regularization.
» As A\ — 0, we obtain the LS solutions.

> As A — 00, we have w598 — 0.
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Ridge Regression
Setting R = XTX,
Wi = (XTX 411Xy
= (R+ M) 'R(RXTy)
= R+ R))TR((XTX)'X"y)

wls

= (L+AR"H)RRW”
= (I+ R e
» If X is orthonormal and X7X =1, then:
W;\idge _ (XTX+>\Id)_1XTy
wgidge _ (1+/\)’1I31Xy

i L
wgzdge _ Wls'
14+
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Ridge Regression- Prostate cancer example

Correlation between the level of prostate-specific antigen and clinical measures
in men who were about to receive a radical prostatectomy: log cancer volume
(Icavol), log prostate weight (lweight), age, log of the amount of benign
prostatic hyperplasia (Ibph), seminal vesicle invasion (svi), log of capsular
penetration (lcp), Gleason score (gleason), and percent of Gleason scores 4 or
5 (pgg4b). The correlation matrix of the predictors is:

lcavol 1lweight age 1bph svi lep gleason

lweight 0.300

age 0.286 0.317

1lbph 0.063 0.437 0.287

svi 0.593 0.181  0.129 -0.139

lcp 0.692 0.157 0.173 -=0.089 0.671
gleason  0.426 0.024  0.366 0.033  0.307  0.476
pEg4s 0.483 0.074 0.276 -0.030 0481 0.663 0.
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Ridge Regression- Prostate cancer example

Estimated coefficients and test error results, for different subset and shrinkage
methods applied to the prostate data. The blank entries correspond to
variables omitted.

Term LS  Best Subset Ridge Lasso
Intercept 2.465 2.477 2.452  2.468
lcavol 0.680 0.740 0.420 0.533
lweight 0.263 0.316 0.238 0.169
age —0.141 —0.046
lbph 0.210 0.162  0.002
svi 0.305 0.227 0.094
lcp —0.288 0.000
gleason —(.021 0.040
pgeas  0.267 0.133
Test Error 0.521 0.492 0.492 0479

Std Error 0.179 0.143 0.165 0.164
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Prediction Error And The Bias-Variance Tradeoff

» Good estimators should have small prediction errors.
» Consider the PE at a particular point xq:

PE(xq) = 02 + Bias?(f(xg)) + Var(f(x0)). (3)

» Bias-variance tradeoff.
» As model becomes more complex, local structure/curvature can be picked up.
» But coefficient estimates suffer from high variance as more terms are included in the
model.
» Introducing a little bias in estimate for 5 might lead to decrease in
variance, and to decrease PE.
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Ridge Regression

Bias-variance trade-off.

o _|
©
<o
[Te)

o
~r

Mean Squared Error
20 30
|

10

1e-01 1e+01 1e+03

Squared bias (black), variance (green), and test mean squared error (purple).
» )\ =0, the variance is high but there is no bias.
» As ) increases, the variance decreases, at the expense of bias.
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